

Strategic Disruption from Orbit: Space-Based Capabilities for Irregular Warfare in the Indo-Pacific

Description

Editorâ??s Note: This article was submitted for the Irregular Warfare Initiativeâ??s [2025 Writing Contest](#), which invited authors to examine how the United States and its partners can employ irregular warfare to strengthen security cooperation and resilience across the Indo-Pacific. We have edited this piece following its selection. It stood out for its clear explanation of how space-based capabilities can empower partners, expose gray-zone activity, and shape strategic competition unfolding across the region.

During World War II, U.S. forces in the Pacific faced a vast and challenging expanse. Islands were isolated, supply lines were stretched thin, and intelligence was limited to the speed of ships, aircraft, or radios. Today, although the geography and the challenges that come with it remain unchanged, technological capabilities have advanced significantly. Warfighters now look beyond the horizon for an advantage; in fact, they look to orbit, where space has become the ultimate high ground. From that vantage point, modern forces gain essential capabilities in communication, navigation, intelligence, and targetingâ??capabilities that increasingly influence outcomes in conflict and require new strategic approaches for future operations.

This technological evolution is unfolding as the character of competition in the Indo-Pacific continues to shift. The region is increasingly shaped by irregular forms of competition including coercive infrastructure development through Chinaâ??s Belt and Road Initiative, illegal fishing, [gray-zone maritime](#) pressure from state-affiliated militias, and malign operations designed to undermine democratic institutions. Yet many frontline partners, small island states, and midsized regional powers lack the surveillance, communication, and intelligence infrastructure [to compete in this space](#).

Space-based capabilities are powerful but underleveraged tools that can accelerate understanding, uncover coercive actions that would otherwise remain concealed, and help frontline states in the Indo-Pacific extend their vision. Amidst this backdrop, the United States should facilitate access for frontline partners to space-based capabilities, particularly unclassified and commercially derived data, as essential tools for irregular warfare that would bolster long-term deterrence in the Indo-Pacific.

Understanding the Environment from Orbit

Most Indo-Pacific nations are unable to fully monitor their exclusive economic zones. Adversaries exploit these blind spots by using commercial vessels, unmarked militias, and Automatic Identification System ([AIS](#))-dark maritime traffic to conduct surveillance, steal resources, or assert territorial claims. In the South China Sea alone, documented instances of Chinese maritime militia vessels operating in disputed waters increased by 35% between [2021 and 2023](#), with many utilizing sophisticated electronic countermeasures to mask their activities.

Commercial satellite capabilities, such as synthetic aperture radar (SAR) for detailed imaging, radiofrequency geolocation for tracking, and high-resolution optical imagery for visual surveillance, enable persistent, non-intrusive detection and monitoring of this type of activity. Moreover, the proliferation of low-cost commercial satellite constellations has democratized access to these capabilities, with resolution now reaching sub-meter levels at costs accessible to smaller nations.

Space-based technologies are also transforming the operational environment. High-resolution imagery, combined with Artificial Intelligence (AI)-enabled analysis, facilitates the detection of patterns that are imperceptible to human analysts alone. For instance, advanced algorithms can identify subtle infrastructure changes that signal [gray-zone](#) activities weeks or even months before they are confirmed by conventional means. Recent [industry studies](#) have noted that high-revisit-rate commercial constellations, combined with AI and cloud processing, now provide early warnings of adversarial behavior in contested maritime regions, offering decision-makers more time to make more informed decisions. Such early detection capabilities have already [revealed incremental land reclamation](#) and radar installation activity at disputed South China Sea features well ahead of traditional verification methodologies, allowing partners to anticipate destabilizing activity rather than merely respond to it.

By integrating AI and machine learning into space-based systems, analysts can now sift through the [immense volume](#) of collected imagery, enabling partners with limited analytical capacity to derive meaningful insight that was previously out of reach. Increasingly, portions of this analysis occur â??on-edge,â?• processed onboard satellites to reduce latency and the volume of data that must be downlinked. At the same time, analysts use higher-fidelity processing through cloud-based ground systems, which provide more detailed results than on-orbit processing alone. This hybrid approach accelerates the entire process, from data collection to transmission and ultimately to generating actionable insights with greater speed than before. This speed is crucial for getting ahead of complex influence campaigns that combine economic pressure, online propaganda, and military activities simultaneously. Faster analysis allows governments to detect these coordinated efforts earlier, understand their connections, and respond before they escalate.

Empowering Partners Through Connectivity and Insight

Many of the most strategically important partners in the Indo-Pacific operate in environments where terrestrial communications infrastructure is limited or nonexistent. Island nations, jungle interiors, and coastal riverine regions often lack the digital backbone needed for timely response or regional coordination. The [Quadrilateral Security Dialogue](#) initiative involving the U.S., Australia, India, and Japan has begun addressing this challenge by coordinating the delivery of space-based data and communication applications to remote areas vulnerable to adversary influence operations.

Deploying space-based communications and low-bandwidth satellite systems can extend secure, real-time voice and data capabilities to field units, enabling them to operate effectively in challenging environments. These tools enhance not only operational coordination but also the ability to collect and share intelligence without needing permanent basing or large U.S. footprints. Recent [collaboration](#) between the United States and Japan has demonstrated how shared space-based communications infrastructure can create resilient networks that remain functional even during attempts at electronic warfare or jamming—[an essential capability to neutralize the effect of sophisticated electronic countermeasures throughout the region](#).

As partners gain access to these new tools, the next challenge is ensuring their effective use. Training is critical, but for it to have a lasting effect, training must reflect the complexity of real-world environments. Satellite data provides an ideal tool for scenario-based training, helping partners recognize patterns and threats specific to their terrain and geopolitical context. A recent example is U.S. Indo-Pacific Command's [Information Sharing Framework](#), which has enabled partner forces to train using actual satellite data from their operational areas, improving their ability to identify and respond to emerging threats. For example, using archived imagery of illegal construction or deforestation during mobile training team engagements can teach local forces how to identify environmental changes associated with illicit activity. These training methods create intuitive familiarity with Intelligence, Surveillance, and Reconnaissance products and foster a mindset of persistent surveillance and sovereign defense.

However, concerns about data verification and [AI-altered imagery](#) have emerged as significant challenges, particularly as synthetic satellite images and deepfake visual data become increasingly sophisticated. These risks can erode trust in intelligence products and create openings for adversary information operations. Accordingly, training should include practical techniques for verifying the authenticity of imagery, such as metadata analysis, cross-referencing with multi-sensor data, and anomaly detection, so partners can confidently distinguish genuine intelligence from manipulated content. Embedding this verification discipline within partner education strengthens both analytic

integrity and resilience against disinformation campaigns.

Shaping the Narrative

Narrative competition is a key aspect of irregular warfare, and the Indo-Pacific information environment has become increasingly contested. People's Republic of China (PRC) influence operations have become more sophisticated, using coordinated campaigns across multiple platforms to shape regional perceptions and weaken alliance structures. Instead of countering propaganda with more propaganda, the most effective response is the truth, backed by evidence—especially when that evidence comes from space.

Commercial satellite imagery and analysis are giving Indo-Pacific partners unprecedented ability to challenge disinformation and assert their own narratives. Rather than investing in sovereign satellite constellations, most nations can access high-quality, near-real-time imagery and analytic support from commercial providers such as [Planet Labs](#), [Umbra](#), or [Capella Space](#). In 2025, for example, when PRC state media claimed that no new construction was occurring on disputed South China Sea features, commercial satellite imagery published by independent analysts and media outlets provided [compelling visual evidence](#) to the contrary. In another example, the [Philippines](#) leveraged commercial data to document and publicize Chinese maritime militia encroachments near the Scarborough Shoal, providing evidence that contradicted Beijing's public denials and strengthened Manila's diplomatic position. This approach illuminates malign activity without escalating tensions or relying solely on external enforcement. These examples show that, when paired with partner-enabled analysis and reporting mechanisms, satellite data becomes truly actionable. Nations like Palau, the Philippines, or Timor-Leste can move from reactive posturing to proactive maritime domain awareness as a result.

Sustaining the Advantage

Irregular warfare is rarely won in a single operation; it is a cumulative process that unfolds over months or years. Success requires continuity of insight, not just presence. However, frequent rotations of U.S. advisor and liaison teams—often occurring every six to twelve months—along with siloed reporting and fragmented interagency coordination, can disrupt institutional memory and slow campaign momentum. These gaps are routinely exploited by competitors who maintain continuous, multi-domain engagement in the same operational areas.

Tools that enable persistent knowledge sharing, such as secure, cloud-native platforms that track relationship dynamics, operational history, and campaign context, are essential for sustaining irregular warfare campaigns over time. The growing strategic challenge posed by China has made the

[U.S.-Australia partnership](#) central to advancing shared awareness across domains. The two countries' recent collaboration shows how allies can combine commercial and government space data into a common operational picture—precisely the distributed, resilient information-sharing model that the U.S. Space Development Agency's Proliferated Warfighter Space Architecture (PWSA) aims to implement at scale. The Australia-U.S. model demonstrates how this works in practice: multiple sensors, shared data standards, and synchronized access to the same information. When combined with allied Space Domain Awareness (SDA) systems that incorporate commercial and government sensors, this networked approach guarantees continuous insight even as rotations change and missions adapt.

While PWSA and SDA were conceived for broader space defense, their decentralized, persistent, and shareable data frameworks mirror the same principles that underpin effective irregular warfare: rapid sense-making, partner empowerment, and sustained tempo across a dispersed battlespace. By ensuring continuous, shared access to actionable space data, these architectures transform what was once episodic engagement into enduring influence, allowing partner networks to maintain pressure and coherence in long-term campaigns against gray-zone aggression.

Conclusion

Space-based capabilities are not simply enablers of irregular warfare in the Indo-Pacific; they are rapidly becoming a key center of gravity. Their persistence, scalability, and political viability allow the United States and its partners to detect coercive actions early, shed light on gray-zone activities that thrive in ambiguity, and share a common operational picture without requiring a large physical presence. These benefits make space tools especially suited for long-term competition in a region where terrain, distance, and access often challenge traditional security strategies.

Recognizing their importance is no longer enough. To compete effectively, the United States must institutionalize space-enabled capabilities, especially unclassified, commercially produced imagery and analytics, as primary tools for irregular warfare and deliver them to frontline partners. This approach will enable Indo-Pacific nations to identify malicious activities on their own terms, enhance their capacity to counter information manipulation, and maintain momentum even as U.S. teams rotate or operational demands evolve. Emerging frameworks like the Space Development Agency's Proliferated Warfighter Space Architecture and allied Space Domain Awareness initiatives offer a model for how shared, low-latency space data can empower partners and strengthen regional resilience.

The future of irregular competition will belong to those who see first, understand fastest, and act asymmetrically with trusted partners. From orbit to ocean, advantage will not solely depend on presence but on the ability to democratize insight and share the truth instantly. By fully integrating space-based resources into irregular warfare strategies and providing these capabilities directly to nations most affected by gray-zone coercion, the United States can help build a more resilient Indo-Pacific while maintaining strategic stability in the priority theater.

Trent Keipour is a defense contractor and former U.S. Air Force Tactical Air Control Party (TACP) specialist with over twenty years of experience in both kinetic and non-kinetic fires, integrating air, space, and cyber capabilities across special operations and multi-domain missions. He previously served within the Special Operations Integration Branch at United States Space Command, where he helped coordinate space support to global operations conducted by U.S. Special Operations Command and Joint Special Operations Command. His current work focuses on applying space-enabled tools to operational planning, partner engagement, and irregular warfare challenges across the Indo-Pacific. He holds a graduate degree in Environmental Policy and a graduate certificate in Countering Weapons of Mass Destruction from the Air Force Institute of Technology.

Main Image: Generated by DALL-E, OpenAI (November 2025).

If you value reading the Irregular Warfare Initiative, please consider [supporting our work](#). And for the best gear, check out the [IWI store](#) for mugs, coasters, apparel, and other items.

The views expressed are those of the author and do not reflect the official position of the Irregular Warfare Initiative, Princeton University's Empirical Studies of Conflict Project, the Modern War Institute at West Point, or the United States Government.

Date Created

2025/12/04